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Abstract While not appreciated at the time, the Nobel 
Prize-winning work of Huggins and Hodges in the 
1940s illustrated the androgen dependence of prostate 
cancer and credentialized the first “targeted” (in this case, 
the androgen receptor) anticancer therapy. Androgen 
deprivation therapy induces long-term remission in 
most patients, but development of castration-resistant 
prostate cancer (CRPC) is inevitable. Most treatments 
for CRPC have been approved for symptomatic benefit, 
with only docetaxel shown to improve overall survival.  
Mechanisms underlying shift to castrate resistance 
have been attributed to a complex interplay of clonal 
selection, reactivation of AR axis despite castrate 
levels of serum T, adaptive upregulation of antiapop-
totic and survival gene networks, stress-induced cyto-
protective chaperones, and alternative growth factor 
pathways. CRPC tumors develop compensatory mech-
anisms during androgen deprivation, tailored to the 
synthesis of intratumoral androgens, which along with 
ligand-independent mechanisms involving cofactors 
or growth factor pathways, cooperatively trigger AR 
activation and thus disease progression. Over the last 
few years, numerous gene targets involved with CRPC 
that regulate apoptosis, proliferation, angiogenesis, 
cell signaling, and tumor-bone stromal interactions 
have been identified, and many novel compounds 
have entered clinical trials either as single agents or 
in combination with cytotoxic chemotherapy. In this 
review, several genes and pathways involved in CRPC  

progression will be reviewed, with particular emphasis 
on preclinically credentialized genes and pathways 
that are currently the targets of novel inhibitors in later 
stages of clinical development. These include the AR 
axis, molecular chaperones, tumor vasculature, bone 
stroma, and signal transduction pathways such as those 
triggered by IGF-1 and IL-6.
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Introduction

Prostate cancer (CaP) cell proliferation and survival 
are regulated through complex interactions between 
cell surface receptor-mediated cell signaling and 
transcription factor regulation of gene expression. 
Androgens are principal factors in CaP carcinogenesis 
and progression, regulating gene and signaling 
networks that promote cell survival through binding 
with the androgen receptor (AR), a ligand-responsive 
transcription factor. Testicular synthesis of testosterone 
(T) accounts for 90% of the dihydrotestosterone (DHT) 
formed in the prostate, with the remainder derived 
from less potent adrenal androgens. Once intracellular, 
T is converted to DHT by 5a-reductase, binding to and 
activating the AR that subsequently dimerizes, translo-
cates to the nucleus, and interacts with promoter 
regions of specific genes to regulate transcription and 
hence protein synthesis, cell proliferation, survival, 
and differentiation.

Though not appreciated at the time, the Nobel 
 Prize-winning work of Huggins and Hodges [1] in the 
1940s credentialized the first “targeted” (in this case, 
the AR) anticancer therapy by confirming the androgen 
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dependence of CaP. Following androgen deprivation 
therapy (ADT), benign and malignant prostate epithe-
lial cells undergo apoptotic regression leading to >80% 
objective response and prolonging median overall sur-
vival from ~18 to ~36 months in men with metastatic 
disease [2]. Serum PSA, an AR-regulated gene, 
remains the most useful marker of response and prog-
nosis to ADT; PSA nadir levels above 4 µg/L after 
6 months of ADT are associated with a median survival 
of 18 months compared with 40 months when nadirs 
below 4 µg/L are seen [3]. Despite high initial response 
rates, remissions are temporary because surviving tumor 
cells usually recur with castration-resistant prostate 
cancer (CRPC) phenotype. The earliest signal of CRPC 
is a rising PSA while on ADT, predating clinical pro-
gression by 6–12 months and death by 18-24 months 
[2, 4]. Thus, one of the main obstacles to the cure of 
advanced CaP by androgen ablation is progression to 
CRPC, a complex process involving variable combina-
tions of clonal selection [5, 6], adaptive upregulation 
of antiapoptotic survival genes [6–11], AR transactiva-
tion from low levels of androgen, mutations or 
increased levels of coactivators [12–14], and alterna-
tive growth factor pathways [15–20] (Fig. 1.1). If we 
are to have a significant impact on survival, new thera-
peutic strategies designed to inhibit the emergence of 
this acquire treatment-resistant phenotype must be 
developed.

Improved understanding of the molecular basis 
underlying bone-specific metastases and resistance to 
ADT or chemotherapy will facilitate the rational design 
of targeted therapeutics. In addition to castrate- resistant 
disease, a second unique characteristic of CaP progres-
sion is bone-predominant metastatic progression. Bone 
provides a rich microenvironment for establishment of 
CaP metastasis, at least in part, because of its dense 
reservoir of growth regulatory factors, extracellular 
matrix proteins, and hydroxyapatite scaffolds to sup-
port tumor growth. Over the last few years, numerous 
gene targets that regulate apoptosis, proliferation, 
angiogenesis, cell signaling, and tumorbone stromal 
interactions have been identified, and many novel 
compounds have entered clinical trials either as single 
agents or in combination with cytotoxic chemotherapy. 
Because of rapid progress of this field, it is beyond the 
scope of this chapter to review all compounds under 
investigation. This review will focus on molecular and 
cellular mechanisms involved in CaP progression, 
metastases, and treatment resistance, with particular 

emphasis on preclinically credentialized genes and 
pathways that are currently the targets of novel inhibitors. 
These include the AR axis, molecular chaperones, 
tumor vasculature, bone stroma, and signal transduction 
pathways such as IGF-1 and IL-6.

AR Axis

The AR is a ligand-dependent transcription factor and 
member of the class I subgroup of the nuclear receptor 
superfamily that plays a key role in prostate carcino-
genesis and progression [21, 22]. The classical model 
of androgen-regulated AR transcriptional activity has 
not fully defined the many diverse effects of androgens 
on CaP cell survival and growth. In response to 
 androgen, cytoplasmic AR rapidly translocates to the 
nucleus and interacts with sequence-specific androgen 
response  elements (ARE) in the transcriptional regula-
tory regions of target genes [22, 23]. In addition to this 
transcriptional genomic action, androgens and other 
steroid  hormones such as progesterone and estrogen 
can exert rapid nongenomic effects that are not 
 mediated through nuclear receptors but rather initiated 
at the plasma membrane, presumably through surface 
receptors [24–26].

Androgens and AR are essential for CaP progres-
sion, and in many cases CRPC maintains many aspects 
of AR function by increased AR expression and/or 
mutagenesis resulting in increased sensitivity to andro-
gens, permissive activation by nonandrogenic steroids, 
de novo steroid synthesis, and/or ligand-independent 
activation [6, 12–15]. Moreover, AR activation 
controls CaP proliferation and survival by upregulating 
responsiveness to autocrine and paracrine growth 
factor and cognate receptor loops [20, 27–30] discussed 
further below.

Almost uniformly, CRPC involves the reactivation 
of the AR, as illustrated by sentinel upregulation of PSA, 
a discretely androgen-regulated gene. Experimental 
models and molecular profiles of human CaP indicate 
that the AR becomes reactivated in most CRPC [31–
35]. Several groups [12–14, 31, 32] reported that 
androgen-regulated genes become constitutively reex-
pressed in the absence of testicular androgens during 
“AI” progression. Moreover, downregulation of AR 
using siRNA can suppress “AI” tumor growth [14, 36], 
and many enzymes and gene networks implicated in 
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steroidogenesis are upregulated, leading to reactivation 
of AR [12, 37]. These data suggest that CRPC progres-
sion may not be entirely independent of androgen-
driven activity of the AR, but in fact other sources of 
androgens are being capitalized upon for AR activa-
tion. Recent data suggests that at least two hypotheses 
may account for these observations: that the AR is 
activated independent of ligand (by mutations, over-
amplification, signaling pathways, or increased AR 
coactivators) or that androgen-regulated pathways 
within CaP cells are activated by alternative sources of 
androgenic steroids. These mechanisms are not mutually 
exclusive and expose the clinical problem of developing 

therapies that can account for the complex adaptive 
capacity of CRPC.

Persistent or reactivated AR signaling under ligand-
deprived (or- independent) conditions may result from 
(a) amplified or elevated AR expression [38, 39]; 
(b) AR mutations in the ligand-binding domain that 
enhance AR promiscuity [40–43]; (c) expression of AR 
splice variants that lack a ligand-binding domain and 
are constitutively active in a ligand-independent 
 manner [44, 45] (d) altered expression or activity of AR 
coactivator [46, 47] or chaperone [48] proteins, and 
(e) AR activation by certain kinases or signal transduc-
tion pathways that enhance AR activation in response 
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Fig. 1.1 Schematic of molecular mechanisms contributing to 
castration-resistant disease. (1) Increased androgen receptor 
(AR) transcriptional activity in the presence of castrate levels 
of serum testosterone via (a) overamplification and increased 
hypersensitivity of AR; (b) de novo intracrine synthesis of 
DHT and other androgens via the backdoor pathways; (c) muta-
tions in ligand-binding domain of AR leading to promiscuous 
activation by other ligands or splice variants lacking ligand-
binding domain leading to ligand-independent AR transactiva-
tion; (d) increased coactivators (e.g., SRC, TIF-2, Ack1) that 
enhance AR activity. (2) Activation of proliferative growth 

factor and signaling pathways, notably insulin-like growth 
 factor-1 (IGF-1) and interleukin-6 (IL-6). (3) Upregula tion of 
cell survival genes that inhibit apoptotic pathway activation, 
including Bcl-2, clusterin, Hsp27, YB-1, and NF-kB. (4) Molecular 
chaperones (e.g., clusterin, Hsp27, Hsp90) facilitate protein 
interactions to shuttle transcriptional factors (e.g., AR), phos-
phorylation of signaling events, and suppress stress-induced 
cytochrome c release through interactions with proapoptotic 
Bcl family genes. Another mechanism includes selective out-
growth of subpopulations of preexisting androgen-independent 
CaP cells (clonal selection)
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to low levels of androgen [49–54]. Previous studies 
established that the AR is phosphorylated at multiple 
serine/threonine sites [52, 55–57] and at several tyrosine 
residues. Tyrosine phosphorylation is mediated by at 
least two tyrosine kinases, Src and Ack1, and enhances 
AR responses to low androgen levels [58–60].

An important factor contributing to CRPC via the 
AR axis also includes suboptimal reduction of natural 
AR ligands by traditional ADT. Early studies by Geller 
and colleagues [61] indicated that concentrations of 
androgens sufficient to activate the AR remained in the 
prostate gland despite surgical or medical castration, 
and more recently, these were confirmed and extended 

using LC-MS by Mohler et al. [33, 34] and others [13, 
31, 35]. Adrenal androgens were initially believed to 
be the sole source of androgens utilized by CaP tumors 
[33, 34, 37]. An alternative hypothesis is that choles-
terol and its derivatives can be converted to androgens in 
prostate tumor cells through a series of well-characterized 
stepwise enzymatic events. Androgen synthesis is 
often described in terms of the classical steroidogenic 
pathway through DHEA and testosterone (T) (Fig. 1.2). 
A recently described “backdoor pathway” may serve 
as an alternative synthesis pathway, which utilizes pro-
gesterone as the primary steroidal precursor of DHT, 
thereby bypassing T as an intermediate [63]. Using the 

Fig. 1.2 Intracrine de novo synthesis of testosterone. 
Steroidogenesis pathway converts cholesterol to DHT via the 
pathways involving the steroidal intermediates and interlinked 
enzymatic reactions. Steroids are portrayed in black (classical 

steroidogenesis pathway) and blue (backdoor steroidogenesis 
pathway), and enzymes are portrayed in pink and green. Some 
of the pathways are reversible while others are irreversible as 
indicated by the direction of the arrows
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LNCaP xenograft model, Locke et al. [13] reported 
that tumor androgens, like PSA, increase during 
 castrate-resistant progression. As mice do not synthe-
size adrenal androgens, LNCaP tumors themselves 
were investigated as the source of increased androgens. 
All enzymes necessary for androgen synthesis were 
expressed in castrate-resistant tumors, which were 
capable of de novo conversion of [14C]-acetic acid to 
DHT and [3H]-progesterone to six other steroids 
upstream of DHT. This evidence suggests that de novo 
androgen synthesis may be one of the mechanisms 
leading to CaP progression following castration.

Collectively, these studies suggest that CRPC 
tumors develop compensatory mechanisms during andro-
gen starvation, tailored to the synthesis of intratu-
moral androgens, which along with ligand-independent 
or AR-sensitizing mechanisms outlined above, coop-
eratively trigger AR activation to facilitate disease 
 progression. Hence, despite the failure of maximal 
androgen blockage trials using nonsteroid antiandro-
gens such as flutamide or bicalutamide, CRPC tumors 
are not uniformly hormone refractory and may remain 
sensitive to therapies directed against the AR axis. 
Several new classes of AR-targeting agents are now in 
clinical development, including more potent AR antag-
onists (e.g., MDV3100), inhibitors of steroidogenesis 
(abiraterone), and AR-disrupting agents that target AR 
chaperones such as Hsp90 (17-AAG analogs) or Hsp27 
(OGX-427).

AR Antagonists

First generation nonsteroidal antiandrogens (flutamide 
and bicalutamide) compete with T and DHT in binding 
to AR’s steroid binding domain. However, these anti-
androgens do not sufficiently inhibit AR transactiva-
tion in CRPC. Second generation antagonists have 
been identified that more potently block AR activity in 
CRPC. For example, MDV3100 is a novel AR antago-
nist [14, 64] that demonstrates antitumor activity in 
models with AR amplification and resistance to bicalu-
tamide. Clinical activity has been observed in a phase 
1 trial of MDV3100 in patients with both castration-
resistant and docetaxel-refractory disease. This drug is 
currently in Phase II trials with PSA response rates 
exceeding 40% in CRPC and will move into Phase III 
registration trials in 2010 [64].

Inhibitors of Androgen Synthesis

Historical attempts to suppress adrenal (as well as 
intracrine) androgen production have met with limited 
success. Ketoconazole inhibits several adrenal enzymes 
involved with adrenal androgen synthesis, but only 
modest therapeutic activities in CRPC were observed 
[65]. Abiraterone acetate is a potent steroidal irrevers-
ible inhibitor of CYP17 [17a hydroxylase/C17,20-
lyase], blocking two important enzymatic activities in 
the synthesis of testosterone [66–68]. Pharmacodynamic 
studies demonstrated that its effects on adrenal steroid 
synthesis were consistent with its mechanism of action. 
In Phase II studies of chemotherapy-naïve men with 
CRPC, declines in PSA ³ 30%, ³50%, and ³90% were 
observed in 80, 70, and 24% of patients, respectively, 
reflecting decreases in ligand-dependent AR transacti-
vation. Consistent with abiraterone’s mechanism of 
action, hypertension (HTN), hypokalemia, and lower 
extremity edema were the most commonly observed 
drug-related adverse events. Phase III trials of abirater-
one in CRPC began in 2008 and data should be avail-
able by early 2011.

AR Chaperone Inhibitors

Molecular chaperones are involved in processes of 
folding, activation, trafficking, and transcriptional 
activity of most steroid receptors, including AR. In the 
absence of ligand, AR is predominately cytoplasmic, 
maintained in an inactive, but highly responsive state 
by a large dynamic heterocomplex composed of heat-
shock proteins (Hsp), cochaperones, and tetratricopep-
tide repeat (TPR)-containing proteins. Ligand binding 
leads to a conformational change in the AR and dissocia-
tion from the large Hsp complex [69–74]. Subsequently, 
the AR translocates to the nucleus, interacts with 
coactivators, dimerizes, and binds to ARE to transacti-
vate target gene expression. Dissociation of the 
AR–chaperone complex after ligand binding is viewed 
as a general regulatory mechanism of AR signaling.

Several agents targeting AR-associated chaperones 
are in development. For example, Hsp90 inhibitors 
such as geldanamycin induce steroid receptor degrada-
tion by directly binding to the ATP-binding pocket of 
Hsp90 to inhibit its function [70, 71]. Several Hsp90 
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inhibitors are in Phase I-II trials in CRPC. Hsp27 is a 
cytoprotective chaperone expressed in response to 
many stress signals to regulate key effectors of the 
apoptotic machinery including the apoptosome, the 
caspase activation complex [75, 76], and proteasome-
mediated degradation of apoptosis-regulatory proteins 
[77, 78]. Recently, a feed-forward loop was reported 
whereby androgen-bound AR induces rapid Hsp27 
phosphorylation that in turn cooperatively facilitates 
genomic activity of the AR, thereby enhancing CaP 
cell survival. Antisense knockdown of Hsp27 (OGX-
427) delays CRPC xenograft progression [10, 11], in 
part, by destabilizing the AR through ubiquitin-protea-
some-mediated AR degradation [48] (Fig. 1.3). 
Interestingly, OGX-427 induces degradation of Hsp27, 
AR, and Hsp90, while geldanamycin inhibition of 
Hsp90 induces degradation of client proteins [71], but 
is accompanied by stress-activated increases in Hsp70 
and Hsp27 [79]. A dose escalation Phase I trial of sin-
gle agent OGX-427 in Hsp27-positive cancers was 
completed in 2008 and showed that OGX-427 was 
well tolerated. Decreases in PSA and CA-125, as well 
as CTC counts, suggest single-agent activity in CRPC 
and ovarian cancer, respectively. OGX-427 will move 
into Phase II trials in CRPC in 2010 [80].

Regulation of Apoptosis

In mammals, programmed cell death can be initiated 
by extrinsic or intrinsic death pathways. The extrinsic 
pathway is triggered by extracellular ligands that 
induce oligomerization of death receptors such as Fas 
or other members of the TNF receptor superfamily, 
resulting in activation of a caspase cascade leading to 
apoptosis. The instrinsic pathway is triggered in 
response to a variety of apoptotic stimuli that induce 
damage within the cell including anticancer agents, 
oxidative damage, UV irradiation, and growth factor 
withdrawal and is mediated through the mitochondria. 
These stimuli induce the loss of mitochondrial mem-
brane integrity and result in the release of proapoptotic 
molecules, including cytochrome c (cyt c), which asso-
ciates with Apaf-1 and caspase-9 to promote caspase 
activation, and SMAC/Diablo and Omi/HtrA2 that 
promote caspase activation by eliminating inhibition 
by IAPs (inhibitors of apoptosis proteins) [81–85].

Fas-induced death is the best understood extrinsic 
apoptotic pathway both in terms of mechanism and its 
physiological importance in vivo [86]. Multivalent 
cross-linking of the Fas receptor as a result of FasL 
binding to preassociated Fas receptor trimers triggers 
the recruitment of a set of effector proteins to the 
receptor, resulting in the formation of the death- 
inducing  signaling complex (DISC). The DISC is 
composed of intracellular signaling proteins including 
FADD/MORT1, a death domain-containing adaptor 
protein, and Caspase-8 (also known as FLICE/MACH). 
Upon recruitment to the DISC, caspase-8 is autoprote-
olytically cleaved and activated, which then directly 
activates caspase-3 leading to execution of apoptosis. 
Caspase-8 also leads to activation of the mitochondrial 
amplification loop by proteolytic cleavage of the 
proapoptotic Bcl-2 member, Bid. The truncated Bid 
then translocates to the mitochondria and promotes 
cytochrome c release into the cytosol. In association 
with APAF-1 and pro-caspase-9, cytochrome c forms 
the apoptosome complex leading to the activation of 
caspase-9 that  subsequently cleaves and activates 
effector caspases.

The propensity of tumor cells to undergo stress-
induced apoptosis determines their susceptibility to 
biologic and cytotoxic therapies [85]. Adaptations 
achieved by progressively accumulating genetic muta-
tions increase tumor heterogeneity and decrease sus-
ceptibility to treatment. Many of these adaptations 
involve changes in intrinsic and extrinsic apoptotic 
machinery, including Bcl family members, inhibitors 
of apoptosis, cytoprotective molecular chaperones, 
and/or activation of growth factor-mediated and con-
vergent downstream prosurvival signaling cascades.

Bcl-2

The bcl-2 gene, initially identified in follicular B-cell 
lymphoma due to a characteristic t14;18 translocation 
[87], is a mitochondrial membrane protein that het-
erodimerizes with Bax and other proapoptotic regula-
tors to prevent cytochrome c release from the 
mitochondria and subsequent activation of the intrinsic 
apoptotic cascade [88]. Competitive dimerization 
between pairs of pro and antiapoptotic bcl-2 family 
members (and other chaperones such as clusterin) 
determines how a cell responds to an apoptotic signal. 
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Fig. 1.3 AR transactivation in castration-resistant prostate 
 cancer and potential points of therapeutic intervention. Ligand-
binding to the steroid-binding domain of the AR leads to 
 dissociation of heat-shock proteins, p38 kinase-mediated phos-
phorylation of Hsp27 that replaces Hsp90 as the predominant 
AR chaperone to shuttle the dimerized and phosphorylated AR 
into the nucleus. Several mechanisms converge to support 
AR signaling in a castrate environment and are potential targets 
of therapeutic intervention. (1) Inhibitors of de novo androgen 
synthesis using abiraterone or 5 alpha reductase inhibitors to 

block enzymes involved in the synthesis and metabolism of 
androgens. (2) Target AR synthesis (antisense oligonucleotides 
or siRNA) or maturation [histone deacetylase (HDAC) inhibitors, 
e.g., SAHA]. (3) Potent second generation AR antagonists that 
block ligand-binding domain and prevent dimerization and 
nuclear translocation (e.g., MDV3100). (4) Target AR chaperones 
to destabilize and increase AR ubiquitination and degradation 
rates using inhibitors against Hsp90 (e.g., 17-allylaminogeldan-
amycin) or Hsp27 (OGX-427). (5) Inhibitors of nonnuclear AR 
signaling (e.g., SRC). (6) Coactivator inhibition
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Many studies link overexpression of bcl-2 with 
 treatment resistance [88–92], highlighting bcl-2 as the 
target to enhance chemotherapy-induced apoptosis. 
Targeted inhibition of bcl-2 was initially accomplished 
using antisense oligonucleotides (ASOs) with many 
reporting good hormone or chemosensitization activ-
ity in preclinical models [8, 93–96]. G3139, also 
referred to as oblimersen sodium or Genasense (Genta 
Inc.), is a first generation 18-mer phosphorothioate 
ASO evaluated in many clinical trials based on prom-
ising activity in preclinical models of many cancers 
[97–101]. Unfortunately, randomized Phase II or III 
trials in CRPC [101] and melanoma [102] or myeloma 
[103] did not show clear evidence of anticancer effi-
cacy. These negative results have put future trials with 
this agent on hold. Issues persist about the dosing and 
regimen of this first generation ASO, and whether 
6 days of 7 mg/kg/day treatment are enough to sup-
press target sufficiently.

Bcl-xL is another antiapoptotic bcl-2 family mem-
ber. In tumors where bcl-2 and Bcl-xL are coexpressed, 
it is difficult to predict which of the two proteins is 
more critical for survival, and some tumor cells have 
been reported to switch expression from Bcl-2 to 
Bcl-xL [104]. Bcl-xL ASOs have been reported to sen-
sitize various tumor cells, including prostate, to che-
motherapy [105–109].

BH3 mimetics are a novel class of anticancer agents 
moving forward in clinical development that induce 
apoptosis in tumor cells, regardless of their p53 or Bcl-2 
status by enhancing the proapoptotic potential of BH3-
only proteins or bypassing the need for BH3-only pro-
teins by directly blocking interactions of Bcl-2-like 
prosurvival molecules with Bax and/or Bak [110, 111].

CLU

Human clusterin gene is located in chromosome 8p21-
p12, where it is organized into nine exons [3] and 
encodes for two transcriptional isoforms in humans 
(Isoform 1, NM_001831 [GenBank]; Isoform 2, 
NM_203339 [GenBank]). These isoforms result from 
different transcriptional initiation sites and are pro-
duced only in humans and primates. In humans, clus-
terin exists as both an intracellular truncated 55- kDa 
nuclear splice variant (nCLU) and a 80- kDa secreted 
heterodimer disulfide-linked glycoprotein, making 

clusterin the only known secreted chaperone [112–114]. 
Clusterin isoform 2 (sCLU-2) is the predominant iso-
form and is highly conserved across species, while 
sCLU-1 is expressed only in primate species. sCLU is 
a multifunctional stress-activated molecular chaperone 
possessing chaperone-like properties similar to small 
heat-shock proteins that stabilize and/or scaffold multi-
meric protein conformations during times of cell stress. 
A low abundant proapoptotic nuclear (nCLU) splice 
variant with properties that can regulate DNA repair 
has also been described [115–117]. Hsp and CLU facil-
itate degradation of terminally misfolded proteins by 
the ubiquitin-proteasomal degradation or aggresome-
autophagy systems [118]. The 60 kD cytoplasmic CLU 
interacts with and inhibits conformationally altered 
Bax in response to cytotoxic stress, impeding Bax oli-
gomerization and intrinsic pathway activation [119, 
120]. Cytoplasmic CLU also regulates NF-kB activa-
tion, a stress- regulated transcription factor that controls 
inflammatory and innate immune responses, as well as 
many aspects of oncogenesis. NF-kB is activated in 
cancer cells by chemo- and radiation therapy and asso-
ciated with acquired anticancer treatment resistance, 
including CRPC [121–123]. In its inactive form, NF-kB 
is sequestered in the cytoplasm by members of the IkB 
family. In the canonical pathway, IKK complex 
 phosphorylates IkB, which is then ubiquitinated and 
degraded in the 26S proteosome, exposing nuclear 
localization signals on NF-kB subunits with subsequent 
NF-kB dimer translocation to the nucleus and transac-
tivation of NF-kB-regulated genes. CLU functions as a 
ubiquitin binding protein that enhances COMMD1 and 
I-kB proteasomal degradation through its interaction 
with members of the SCF-bTrCP E3 ligase family, 
which leads to increased NF-kB nuclear translocation 
and transcriptional activity.

Many mechanisms in heterogeneous cancers con-
tribute to acquired resistance including stress-activated 
prosurvival genes transcriptionally activated by heat-
shock factor 1 (HSF1). HSF1 is the key regulator of 
the heat-shock response, a highly conserved protective 
mechanism for eukaryotic cells under stress, and has 
been associated with oncogenic transformation, prolif-
eration, and survival [124]. Targeting HSF1 [125] or 
multifunctional genes regulated by HSF1 that are asso-
ciated with cancer progression and treatment resistance 
is a rational therapeutic strategy. CLU is transcription-
ally activated by HSF1 [126, 127], IGF-1 signaling 
[128], and androgen [129] and is antiapoptotic in 
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response to hormone-, radiation-, and chemotherapy 
[9, 130–132]. Knockdown of CLU in CaP cells increases 
activated Bax levels with increased cytochrome c 
release from the mitochondria and subsequent activa-
tion of the intrinsic apoptotic cascade, as well as stabi-
lization of I-kB with cytoplasmic NF-kB sequestration 
and decreased NF-kB activity. These data link stress-
induced CLU expression with several antiapoptotic path-
ways relevant to acquired anticancer treatment resistance 
and mark CLU as an anticancer target.

Clusterin is overexpressed in a variety of human 
cancers, including those of the breast, lung, bladder, 
kidney, colon/rectum, and prostate [133–138]. Antisense- 
or siRNA-induced CLU knockdown enhances treat-
ment-induced apoptosis and delays progression in 
many cancer models [9, 130, 139–141]. OGX-011 is a 
second-generation ASO that incorporates the 2¢ MOE 
modification with four 2¢ MOE-modified nucleosides 
at the 3¢ and 5¢ ends of the oligomer [141, 142] that 
decrease CLU levels >90% [143]. A randomized 
phase II study in chemo-naïve CRPC reported that 
OGX-011 + docetaxel prolonged overall survival by 
7 months (16.9–23.8 months) and reduced death rates 
by 39%, compared with docetaxel alone [144]. Phase 
III trials are set to begin in 2010.

Hsp27

Heat-shock protein 27 (Hsp27) is a 27- kDa molecular 
chaperone induced and phosphoactivated in response 
to a variety of biological, chemical, and physical stres-
sors including heat-shock, oxidative stress, cytokines, 
and hormone- or chemotherapy [145]. Increased 
expression of Hsp27 during stress suppresses apopto-
sis, in part, from its role as a molecular chaperone to 
prevent protein aggregation or facilitate elimination of 
misfolded proteins. In addition, Hsp27 can act as a 
scaffolding protein to facilitate protein interactions 
and phosphorylation of signaling events [146]. Hsp27 
is a multifunctional suppressor of apoptosis through 
interactions with Bid [75], procaspase-3 [147], cyto-
chrome c [75], Smac/Diablo [148], and Daxx [149]. In 
addition, Hsp27 modulates the actin cytoskeleton [150] 
and intracellular levels of reactive oxygen species 
[151], interacts with several key client proteins involved 
in cell survival signals including IkBa [152], IKKb 
[153], STAT-3 [11], AR [48], and Akt [154–156]. Akt 

is a key serine–threonine kinase that enhances the 
survival and proliferation of cells by regulating the 
function of proapoptotic proteins such as BAD and 
caspase-9, cell cycle regulators such as p27kip1, and medi-
ators that control apoptosis and/or proliferation, such 
as MDM2, FOXO, GSK3, TSC2, and PRAS40 [156].

Hsp27 is frequently overexpressed in numerous 
malignancies, including prostate, [10, 157] and associ-
ated with poor clinical prognosis and therapeutic resis-
tance [10, 158, 159]. Not only is Hsp-27 a powerful 
biomarker of aggressive CaP, but it is also a potential 
target for novel therapeutic intervention. Knockdown 
of Hsp27 suppresses tumor growth and sensitizes 
 cancer cells to hormone-, chemo-, and radiotherapy 
[10, 11, 159]. The biphenyl isoxasole KRIBB3 inhib-
its protein kinase C-dependent phosphorylation of 
Hsp27 to induce mitotic arrest and enhances apoptosis 
[160]. Recently, pyrrolo-pyrimidones, a novel class of 
p38 MAPK/MAPK-activated protein kinase 2 (MK2) 
inhibitors, have been shown to inhibit phosphorylation 
of Hsp-27 at Ser78 and Ser82 by the MAPKAP kinase 
MK5 [161, 162]. Not only is the MAPKAPK2/Hsp-27 
pathway a promising potential target for therapeutic 
intervention but the isoflavone genistein, an estrogen 
analog and candidate chemotherapeutic agent, inhibits 
cell migration by blocking activation of this pathway 
[163]. Recently, OGX-427, a selective, second- generation 
ASO inhibitor of Hsp27 has recently advanced into 
phase I/II clinical trials for treatment of a variety of 
cancers [80]. OGX-427 was well tolerated as a mono-
therapy and demonstrated declines in circulating tumor 
cells as well as reduction in PSA levels in three patients 
with CRPC. Reductions in both circulating tumor cells 
and tumor markers suggest single-agent activity war-
ranting further clinical investigation.

Signal Transduction Pathways

IGF and IGF-1R in CaP Progression

The IGF axis is an important regulator of growth, sur-
vival, and metastatic potential in a variety of malignan-
cies and is strongly implicated in CaP etiology 
[164–167]. This endocrine system consists of the 
ligands IGF-I and IGF-II, the receptor tyrosine kinase 
(IGF-1R) and the mannose-6-phosphate receptor (IGF-
IIR), and a family of high-affinity IGF-binding proteins 
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(IGFBPs) and IGFBP-related proteins, which modulate 
IGF/IGF receptor biological activities, any of which 
change in many disease states [168–170]. IGF-1R 
overexpression has been found in a range of tumor 
types and is a predictor of poor prognosis in many 
cancers. IGF-1R signaling plays critical roles in the 
development and progression of cancer by allowing 
cells to overcome the propensity to die via apoptosis, 
necrosis, or autophagy in response to uncontrolled 
replication, loss of substrate adhesion, hypoxia, and 
therapeutic stress (Fig. 1.4).

Ligand activation of IGF-1R results in phosphory-
lation and membrane recruitment of insulin receptor 
substrate proteins (IRSs) and activation of intracellular 

signaling pathways including Ras/mitogen-activated 
protein kinase (MAPK) and phosphatidylinositol-3 
kinase (PI3K)/AKT/mTOR that in turn control the 
various IGF-mediated biological effects [171]. IGFs 
are potent mitogens and antiapoptotic factors for many 
normal and malignant tissues [172]. Both receptor 
activation and these downstream signaling cascades 
are therapeutic target candidates.

Perturbations in intrinsic expression of IGF axis 
components are implicated in susceptibility and pro-
gression of CaP [173–181]. IGF-1R expression is ele-
vated in metastatic [177] and CRPC [17, 20]. 
Furthermore, maintaining IGF-I responsiveness 
facilitates CaP survival and growth and is achieved 
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Fig. 1.4 Rational Therapeutic Targeting of Insulin-like 
Growth Factor Axis. Insulin-like growth factors I and II (IGF-I 
& II) are sequestered in circulation by IGF-binding protein 
(IGFBP)-3/acid-labile subunit (ALS). IGFBPs -2 and -5 
 produced by tumor cells extract IGFs from IGFBP-3/ALS com-
plex and release IGFs into the pericellular space upon prote-
olysis to facilitate IGF receptor binding and activation of 
proliferative and survival signaling via PI3K and Ras cascades. 

Retention of IGFs in the pericellular space can be competi-
tively suppressed by administration of recombinant human 
IGFBP-3 (rhIGFBP-3) and by suppression of IGFBP-2 & -5 
expression by OGX-225 antisense oligonucleotide. IGF-1R 
activation can be blocked by small molecule tyrosine kinase 
inhibitors such as OSI-906 and by induction of internalization 
and degradation by humanized anti-IGF-1R antibodies such 
as IMC-A12 and CP-751,871
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through androgen-modulated IGF-1R expression [20, 
182, 183]. While CaP cells can adapt to enhance IGF 
responsiveness, accumulating evidence indicates that 
paracrine sources of IGF-I and IGFBPs are also 
important mediators of CaP progression [184–187]. 
Such observations directly implicate the IGF axis as a 
mediator of CRPC progression and mark IGF-related 
signaling an attractive therapeutic target [188–192]. 
The clinical potential of a number of immunologic, 
antisense, and small molecules is now being investi-
gated. As previously reviewed, these approaches 
convincingly demonstrate that perturbing IGF-1R 
availability significantly impacts growth and survival 
of in vitro and xenograft model systems.

The long list of TKIs and antibodies targeting 
IGF-1R highlights the high level of enthusiasm for this 
target in prostate and many other cancers. Many human-
ized antibodies targeting the IGF-1R are in early clinical 
development in CRPC and include IMC-A12 and 
CP-751,871 [193, 194]. IGF1R is highly homologous 
to insulin receptors (IRs) with 100% homology in the 
ATP-binding cleft commonly targeted for small molecule 
inhibitors. Because of their structural similarities, TKIs 
and Abs directed at IGF-1R often also affect signaling 
of IR. Small molecule IGF-1R kinase inhibitors, such 
as NVP-AEW541 [195, 196], initially showed great 
promise in preferentially targeting IGF-1R from its 
close homologue, the IR; however, the clinical use of such 
agents is hampered by off-target toxicity. Preclinical 
data of newly emerging agents, such as OSI-906 that 
showed strong antitumor activity and reduced incidence 
of IR-mediated side effects, and this TKI that is in 
Phase 1 trials are forthcoming [197].

IGFBPs and CRPC

IGFBPs are a family of six circulating proteins that 
bind IGF-I and -II with equal or greater affinity than 
that of the IGF receptors and regulate IGF distribution, 
function, and activity [198, 199]. IGFBPs-2, 3, 4, 5, 
and 6 are expressed in prostatic tissues and cell lines 
[200–204]. IGFBP-2, 4, and 5 levels are correlated, 
while IGFBP-3 levels are inversely associated, with poor 
prognosis [200, 204]. The correlation between changes 
in IGFBP levels and concomitant changes in IGF-1R 
and IGF levels, disease state, and androgen ablation 
therapy implicates these adaptive responses in influ-
encing disease progression.

Although it is clear that increased IGFBP-3 and 4 
levels antagonize IGF signaling and increase sensitivity 
to apoptotic stress [205–207], other IGFBPs have been 
suggested to both inhibit and enhance IGF-1R-
mediated signaling [208–211]. IGFBP-2 is one such 
factor whose expression is elevated in patients under-
going androgen ablation therapy [19]. Inhibiting 
IGFBP-2 expression in LNCaP cells increased androgen 
withdrawal-induced apoptosis and suppressed xeno-
graft growth in castrated hosts [19]. Additionally, 
overexpressing IGFBP-5 accelerated AI progression 
of LNCaP tumors [18], while inhibiting IGFBP-5 expres-
sion decreased AI progression and IGF-I-dependent 
growth [212]. However, while elevated IGFBP-2 and 
5 levels appear to contribute to disease progression at 
least in part by enhancing IGF responsiveness, IGFBPs 
have also been attributed with IGF-1R-independent 
activities that may contribute to prostatic oncogenesis 
[18, 208, 213–215] suggesting that binding and mod-
ulation of integrin signaling may also be critical to 
both IGF-1R-dependent and -independent IGFBP 
activities.

The primary IGF-binding protein, IGFBP-3, has 
also been attributed with IGF-dependent and 
- independent antiproliferative and proapoptotic activi-
ties on human cancer cells. In preclinical cancer 
 models, recombinant human IGFBP-3 (rhIGFBP-3) 
is able to suppress growth of Herceptin-resistant 
breast, as well as lung and colon cancer xenografts as a 
single agent and on the latter xenograft model, aug-
mented antitumor activity of irinotecan in combina-
tion [216, 217]. Consistent with the role of IGFBPs in 
modulating IGF signaling, these antitumor activities 
are correlated with suppression of AKT signaling in 
these models. In the CaP xenograft model, LAPC-4, 
rhIGFBP-3 synergized with the retinoid X receptor-
alpha ligand VTP194204, to dramatically inhibit tumor 
growth by induction of apoptosis [218].

Also targeting IGFBPs is OGX-225, an ASO that 
effectively suppresses expression of IGFs -2, -3, and 
-5. Since IGFBP-2 and -5 are reproducibly upregu-
lated in breast and CaPs, targeting their expression 
can selectively disrupt IGF signaling in tumor cells. 
Preclinical studies in human prostate, bladder, glioma, 
and breast cancer models indicate that reducing IGFBP-2 
and IGFBP-5 production with OGX-225 promotes 
apoptosis and sensitize all of these tumor types to 
 chemotherapy [219]. OGX-225 has completed prec-
linical pharmacology and is being evaluated for 
 clinical trials.
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Phosphatidylinositol 3-Kinase-Mediated 
Survival Signaling in CaP

A key oncogenic feature of IGF signaling is protection 
against cytotoxic stress mediated by PI3K/AKT/PTEN 
signal transduction-triggered intracellular signaling 
cascades [190, 220]. The serine/threonine kinase, 
AKT, is a prominent node in the convergence of various 
growth and survival-promoting intracellular signaling 
cascades. Its activation is triggered by PI3K and gen-
eration of phosphatidylinositol 3-, 4-, 5-triphosphate 
(PIP-3), which serves to recruit pleckstrin homology 
(PH) domain-containing proteins to the plasma membrane, 
including the S/T kinases, PDK-1 and -2, or ILK and 
AKT [221, 222].

A signature event impacting PI3K signaling in ~50% 
of advanced CaP is homozygous loss of the tumor- 
suppressor gene, PTEN [223] and among those patients 
who are not PTEN null, many exhibit loss of one PTEN 
allele [224]. Recently, hemizygous PTEN loss combined 
with the presence of TMPRSS2:ERG gene rearrange-
ments were reported to increase the risk of biochemical 
progression [225]. PTEN is a tumor suppressor that 
functions as a 3¢ phosphatase of PIP3. It acts as a nega-
tive regulator of cell migration, cell survival, and cell 
cycle progression [226] and is associated with increased 
resistance to chemotherapy and increased angiogenesis 
[227, 228]. Its loss results in aberrant accumulation of 
PIP3 and subsequent survival signals [224, 229, 230]. 
Demonstration that prostate-specific PTEN knock-out 
mice develop metastatic CaP [231] and that ectopic 
expression of PTEN reduces CaP cell growth and 
induces apoptosis [232–234] underscores the impor-
tance of PTEN in PCa establishment and progression. 
However, while loss of PTEN expression appears to be 
a prominent means by which CaP cells promote AI 
growth, which and how selection for hyperactivated 
PI3K signaling is invoked remains to be elucidated.

PI3K-induced recruitment and activation of AKT is 
a central antiapoptotic pathway triggered by growth 
factors [reviewed in235]. AKT directly phosphorylates 
and inactivates several proapoptotic factors, including 
Bad [236], procaspase-9 [237], GSK3b, and Forkhead 
transcription factors [238, 239] and activates c-FLIP, 
MDM2, mTOR, and the antiapoptotic transcription 
factor, NFkB [240]. In turn, mTOR complexed with 
rictor can regulate activation of AKT [241]. Association 
of constitutive AKT activation with resistance to 
chemo- and radiotherapeutics in diverse cancers, 

particularly CaP, has promoted research into the role(s) 
of subsequent downstream signaling in regulation of 
these phenomena [242, 243].

The mammalian target of rapamycin (mTOR) is an 
S/T kinase that regulates cell growth and division by 
integrating information regarding nutrient sufficiency, 
energy levels, and mitogenic signaling [244, 245]. 
mTOR relays proliferative signals from the PI3K path-
way and information on amino acid sufficiency to criti-
cal mediators of protein translation. Inhibition of 
mTOR can reverse AKT-dependent malignant trans-
formation of murine prostate [246] and doxorubicin 
resistance in CaP cell lines [227]. These downstream 
mediators, the 40S ribosomal subunit protein kinase 
(S6K1) and the eukaryotic initiation factor 4E binding 
protein-1 (4EBP1), are required for ribosomal biosyn-
thesis and the production of proteins required for G

1
/S 

transition [247, 248]. Monitoring the activation state of 
terminal kinase targets such as S6 and 4EBP1 can 
therefore be used as pharmacodynamic endpoints for 
activation of upstream signaling cascades due to loss 
of PTEN function, and in response to therapeutics that 
target proximal PI3K activation.

Angiogenesis

Angiogenesis is critically important for the growth and 
metastatic development of tumors. It involves migra-
tion and proliferation of endothelial cells from the 
microvasculature, controlled expression of proteolytic 
enzymes, breakdown and reassembly of extracellular 
matrix, and endothelial tube formation. Stimuli such as 
hypoxia can drive tumor, inflammatory, and connective 
tissue cells to generate a variety of angiogenic factors, 
including growth factors, cytokines, proteases, and cell 
adhesion molecules. Regulation of angiogenesis is 
thought to be largely dependent on a balance between 
pro- and antiangiogenic factors during the vascular 
network formation [249]. Angiogenesis plays an essen-
tial role in CaP development and metastasis. Therapy 
targeting tumor neovasculature therefore represents 
a promising area of research aimed at developing 
anticancer and antimetastasis therapeutics with many anti-
angiogenic agents being evaluated in various phases 
of clinical trials [250].

Among the various proangiogenic factors, vascular 
endothelial growth factor (VEGF) is a major angiogen-
esis promoting factor, primarily acting on endothelial 
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cells to induce their migration and proliferation via 
 activation of tyrosine kinase receptors, VEGFR1 and 
VEGFR2. Increased expression of VEGF by tumors, 
resulting from e.g., hypoxia, can lead to tumor angiogen-
esis. As such, VEGF and its receptors represent key tar-
gets for new antiangiogenic drugs for treatment of cancer 
and have evoked a lot of interest [251, 252]. The VEGF 
level in plasma can serve as an independent prognostic 
factor in men with metastatic CRPC [253]. Antiangiogenic 
agents utilizing specific anti-VEGF monoclonal antibod-
ies, such as bevacizumab (Avastin®), have been evalu-
ated in CRPC. Interestingly, most antiangiogenic drugs 
failed to demonstrate significant activity as single agents 
in CRPC, but when bevacizumab was combined with 
docetaxel a 65% PSA response was achieved [254]. 
Unfortunately, a phase III study with accrual of 1,050 
patients (CALGB 90401) recently reported that the addi-
tion of bevacizumab to docetaxel did not prolong OS.

In addition to VEGF, platelet-derived growth factor 
(PDGF) has been implicated in the progression of CaP 
and bone metastasis and is expressed in 80% of CRPC 
lesions [255]. Preclinical studies indicated that imatinib 
mesylate (Gleevec®), a PDGF inhibitor, is active in CaP 
cell lines, and a phase I trial of 21 patients with metastatic 
CRPC reported a 38% PSA response rate [256]. However, 
a randomized Phase II trial of imatinib and docetaxel in 
patients with CRPC showed increased toxicity without 
delaying progression. Sunitinib (Sutent®) and sorafenib 
(Nexavar®) are oral multitargeted tyrosine kinase inhibi-
tors that inhibit RAF kinase, VEGF receptor tyrosine 
kinase, and the PDGF receptor; both are currently approved 
for the treatment of metastatic renal cell carcinoma [257]. 
Several phase II studies evaluated the activity of sorafenib 
in CRPC [258–260], demonstrating single agent dec-
reases in PSA. Phase III trials of sunitinib and sorafenib 
are either planned or underway as second line therapy in 
docetaxel recurrent CRPC. Despite negative results with 
bevacizumab, the use of angiogenesis inhibitors contin-
ues to be evaluated as a promising treatment strategy for 
a variety of solid tumors, including CRPC.

Inflammation

Increasing evidence suggests that cancer-associated 
inflammation should be viewed as a seventh hallmark 
of cancer [261]. Most recently, such inflammation has 
been functionally linked to metastasis [262]. In fact, a 
number of inflammation-associated proteins, including 

tumor necrosis factor (TNF)-a, interleukin-1  (IL-1), 
interleukin-6 (IL-6), interleukin-11 (IL-11), TGFb, 
cyclooxygenase 2 (COX-2), NFkB, Stat3, stromal-
derived factor-1 (SDF1) and hedgehog, have been 
shown to facilitate CaP growth, tissue invasion and 
importantly, metastasis. Furthermore, inhibition of, for 
example, the COX-2 enzyme, which catalyzes the con-
version of arachidonic acid to prostaglandins, i.e., 
important inflammatory mediators, has led to inhibi-
tion of tumor growth and suppression of metastasis in 
multiple cancers, including CaP [263]. Accordingly, 
inhibition of cancer-associated inflammation has 
emerged as a most promising new approach for treat-
ment of metastatic CaP.

The nuclear transcription factor, NFkB, is a key 
regulator of immune, inflammatory and acute phase 
responses and has also been implicated in the control 
of cell proliferation and apoptosis [264]. It is overex-
pressed in many human cancers, including metastatic 
CaP [265, 266]. Stat3, which is both a cytoplasmic sig-
naling molecule and a nuclear transcription factor, 
belongs to the seven-member Stat gene family of tran-
scription factors. Recently, it has been reported that 
Stat3 is activated in clinical CaP metastasis and in 
recurrent CaP and may have a major effect on meta-
static dissemination of the disease [267]. In view of 
this, NFkB and Stat3 could act as potential targets for 
inhibition of metastatic progression of CaP. RTA 402, 
an NFkB and Stat3 inhibitor, has demonstrated anti-
cancer activity in preclinical studies and a recent clini-
cal Phase I pancreatic cancer trial [268]. This inhibitor 
is now moving into Phase II trials. Moreover, several 
small molecule inhibitors for such targets are under 
preclinical development [269].

The chemokine stroma-derived factor, SDF-1/
CXCL12, plays multiple roles in tumor pathogenesis. 
It has been demonstrated that CXCL12 promotes CaP 
growth, enhances tumor angiogenesis, contributes to 
immunosuppressive networks within the tumor microen-
vironment, and participates in tumor metastasis [270, 
271]. The interaction of CXCL12 and its receptor 
CXCR4 leads to mitogen-activated protein kinase and 
phosphoinositide 3-kinase/Akt–mediated MMP-9 
expression, migration, and tissue invasion of CaP cells 
[272]. Therefore, it stands to reason that the CXCL12/
CXCR4 pathway is an important target for develop-
ment of novel antimetastasis therapies. A wide variety 
of strategies, based on peptides (e.g., T22) [273], 
small molecules (e.g., AMD3100) [274], antibodies 
[275], and small interfering RNAs [276], have been 
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used to target this pathway. Treatments in combina-
tion with current therapies seem to be especially 
promising in preclinical studies, and compounds 
are advancing into early stages of clinical develop-
ment [277].

The hedgehog pathway has also been implicated in 
CaP development and metastasis [278]. The multi 
transmembrane protein, Patched (PTCH), is the recep-
tor for various hedgehog ligands (Sonic, Indian, and 
Desert). In the absence of hedgehog, PTCH inhibits 
Smoothened (SMO), a G protein-coupled receptor 
protein encoded by the SMO gene of the hedgehog 
pathway [279]. When hedgehog binds to PTCH, SMO 
is disinhibited and initiates a signaling cascade that 
results in activation of GLI transcription factors 
and increased expression of target genes (including 
PTCH and GLI1). Inhibition of the hedgehog path-
way induces apoptosis and decreases tumor inva-
siveness of CaP cells. For example, IPI-926 (Infinity 
Pharmaceuticals, Inc.), a small molecule inhibitor of 
the hedgehog signaling pathway, has shown potent 
efficacy and specific inhibition of the hedgehog path-
way in multiple preclinical animal cancer models. 
Currently, IPI-926 is in a clinical Phase 1 trial for 
patients with advanced and/or metastatic solid tumors. 
GLI2 knockdown in preclinical models induces apop-
tosis, inhibits cancer growth, and chemosensitizes 
cells to chemotherapy in vitro and in vivo, providing 
preclinical proof-of-principle for CRPC [280]. The 
approach of regulating cancer-associated inflamma-
tion will be one of the most promising treatment strat-
egies for a variety of tumors, including CaP.

Bone Metastases

Bone is the most frequent site for metastases of CaP. 
While the precise mechanism by which cancer cells 
home to bone is still unclear, it is generally accepted 
that bone can express certain chemo-attractants (e.g., 
SDF-1) or growth factors [e.g., TGFb, IGF] that selec-
tively retain/promote circulating CaP cells. As well, 
the cancer cells secrete many factors (e.g., uPA, TGFb, 
FGFs, BMPs, PDGF, IGF, PTHrP, ET1) that activate 
bone stromal components, thus establishing a complex 
interplay between tumor and bone tissue.

Advances in the understanding of the biology of 
CaP, bone and interactions between tumor and bone 

stroma have led to the development of drugs directed 
against specific molecular sites in the CaP and host 
cells in the bone environment. Bone remodeling is a 
tightly regulated process of osteoclast-mediated bone 
resorption, counterbalanced by osteoblast-mediated 
bone formation. Disruption of this balance can lead to 
excessive bone loss or extra bone formation. Recently, 
a triad of key regulators of bone remodeling in bone 
oncology was discovered. It consists of the receptor 
activator of NF-kB (RANK), an essential receptor for 
osteoclast formation, its ligand RANKL, and the decoy 
receptor osteoprotegerin (OPG). OPG, a member of 
the tumor necrosis factor (TNF) receptor superfamily, 
can bind to RANKL and thus prevents activation of 
osteoclastic bone resorption. RANK, RANKL, and 
OPG are critical determinants of osteoclastogenesis, 
and increased RANK signaling is involved in metasta-
sis of various cancers, including CaP [281–283]. These 
findings highlight the potential of RANKL inhibition 
as a novel treatment for patients with bone diseases 
and metastatic CaP [283–287]. Denosumab, a human 
monoclonal antibody, inhibits osteoclastic bone 
destruction by binding and neutralizing RANKL and 
has been evaluated in a randomized Phase 2 trial of 
CaP patients with bone metastases [288]. Denosumab 
suppressed bone turnover markers (BTMs) in CaP 
patients with bone metastases and elevated BTMs. 
Phase 3 trials of denosumab in patients with bone 
metastases of CaP are in progress (e.g., ClinicalTrials.
gov Identifier: NCT00286091).

Endothelins (ETs) and their receptors (i.e., ET-B 
and ET-A) have emerged as potential targets for thera-
peutic intervention of CaP bone metastasis [289, 290]. 
Several clinical trial studies have shown that use of 
ET-A receptor antagonists (e.g., atrasentan, ZD4054) 
led to a significant increase in the time to disease pro-
gression [291]. While atrasentan failed to achieve its 
primary endpoints in two Phase III trials, indicators of 
anticancer activity were seen. Currently, the 
SWOG-S0421 trial is testing this further in patients 
with metastatic CRPC in a randomized phase III trial 
to compare the efficacy of docetaxel and prednisone 
with or without atrasentan. Several phase III trials of 
ZD4054 monotherapy or in combination with doc-
etaxel are underway in CRPC.

c-Met is a receptor tyrosine kinase involved in mul-
tiple pathways linked to cancer, such as cell migration, 
tissue invasion, and metastasis and is upregulated in a 
large number of human cancers, including metastatic 
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CaP [292, 293]. Multiple agents to target c-Met or its 
ligand hepatocyte growth factor (HGF, scatter factor) 
are under development [294]. Like c-Met, the nonre-
ceptor tyrosine kinase, Src, is considered part of the 
metastatic process [295]. Consequently, a number of 
Src inhibitors are under development. PSCA [296, 
297], MEK5 [298], CDK5 [299], ASAP1 [300], and 
ID1 [301] have also been proposed as potential thera-
peutic targets for metastatic CRPC.
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